
NASA Contractor Report

ICASE Report No. 89-51

181955

ICASE

OPTIMUM SHAPE OF A BLUNT FOREBODY
IN HYPERSONIC FLOW

L. Maestrello

L. Tlng

Contract No. NAS 1-18605

December 1989

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

a-:===. , T _-,,-_°-tNAeA-rR-Ia1955} OPTIMUM SHAPE OF A _LUNT

_L...... _" FORrSODY IN HypFRSO NIC FLOW Final Report
" "- CSCL OIA

_ (ICASF) 22 p

a

Ig/ A
National Aeronautics and
Space Administration

N90-13351

G310Z

unclas

O252155

............ Langley Research Center

Hampton, Virginia 23665-5225



=

= ,
Z



OPTIMUM SHAPE OF A BLUNT FOREBODY

IN HYPERSONIC FLOW

L. Maestrello

NASA Langley Research Center

Hampton, VA 23665

L. Ting 1

Courant Institute of Mathematical Sciences

New York University

New York, NY 10012

ABSTRACT

The optimum shape of a blunt forebody attached to a symmetric wedge or cone is de-

termined. The length of the forebody, its semi-thickness or base radius, the nose radius

and the radius of the fillet joining the forebody to the wedge or cone are specified. The

optimum shape is composed of simple curves. Thus experimental models can be built read-

ily to investigate the utilization of aerodynamic heating for boundary layer control. The

optimum shape based on the modified Newtonian theory can also serve as the preliminary

shape for the numerical solution of the optimum shape using the governing equations for a

compressible inviscid or viscous flow.

1Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the second author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
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1. _TRODUCTION

Optimum shapes of two dimensional or axi-symmetric bodies in hypersonic flight were

studied in the early stage of hypersonic flow research. The results were summarized in the

book [1] by Hayes and Probstein. The analyses were based on the Newtonian-Busemann

(N-B) theory which was justified as the leading term of an asymptotic solution at large

upstream Mach number. Shapes of minimum wave drag with given body length, thickness

and/or volume were determined. The minimum wave drag is achieved when the product

P1 cos 01 is a maximum where 01 is the inclination of the surface at the rear end with respect

to the free stream while P1 is an integral along the surface from the front to the rear and

depends on the shape. With the assumption that 01 and P1 are independent of each other,

the "absolute" optimum shape which maximize the integral P1 has to fulfill also the end

condition

=0. (1)

This end condition cannot be met without a discontinuity in slope. Engineering designs

using an absolute optimum forebody followed by a body confined within a free surface were

proposed to achieve a "proper" shaped body with a wave drag somewhat higher than that

of the optimum shape. We also note that the optimum forebody has a sharp leading edge

or a conical nose [1].

It is well known that the rate of heat transfer to a "cold" wall at the stagnation point is

inversely proportional to the square root of the nose radius [2-4]. An optimum shape with a

sharp or pointed forebody is not suitable for hypersonic flight. To reduce the aerodynamic

heating to an allowable limit, a body in hypersonic flight has to have a finite radius of

curvature, Ro, at the stagnation point. The minimum radius depends of course on the flight

Mach number M_, the altitude and the physical properties of the nose with or without a

heat shielding device. An optimum forebody has to have a nose with a prescribed radius of

curvature greater than the minimum.

In recent studies on boundary layer control by surface heating or cooling [5-8]. It was

found that a boundary layer which is heated upstream and/or cooled downstream is more

stable than that without thermal control. In a hypersonic flow, the aerodynamic heating

near the stagnation point provides a nature source for heating the boundary layer. The

amount of heat acquired by the boundary layer is proportional to R_ +] , where j = 0 and 1

for two dimensional and axi-symmetric flow respectively. From the point of view of boundary

layer control, it is also desirable to have a nose with a prescribed radius of curvature Ro and

then find the optimum shape.

It is well known that the modified Newtonian theory [1], although an empirical theory,



has beenemployedin engineeringdesignsbecauseits prediction of surfacepressureis in

much better agreementwith the experimentaldata than the N-B theory. We shall use the

modified Newtoniantheory to compute the wavedrag and find the optimum shape in this

report. To avoid flow separation or shock boundary layer interaction, we require that the

optimum contour should be smooth, that is, it should match with the circular nose in the

front and the wedge or cone in the rear without a discontinuity in slope. As we shall see

in the next section, the optimum shape under the m0difyNewtonlan theory does not call

for the rear end condition (1). However, the slope of the optimum forebody in general will

not match With that of the wedge or cone. To remove the discontinuity in Slope we assume

that the forebody is joined smoothly to the wedge or cone via a fillet of radius R1. Thus

we complete the specifications of the free front and rear end conditions for the optimum

contour.

2. THE OPTIMUM SHAPE

The modified Newtonian theory is the direct application of the Newtonian theory along

the surface with a correction factor such that the correct stagnation pressure p, is obtained.

The surface pressure p is related to the inclination of the surface with the upstream flow, 6,

by

p = p. sin 2 _. (2)

The wave drag of the forebody is

_o hD = 2p. sin 2 0 (Try)Jdy, (3)

where h is the semi-thickness or base radius. With dz = dy cot 0, the length of the forebody

I yields a constraint,

fl= cot0 dy. (4)

Figure 1 shows the front and the rear end of the forebody located at x -= -I and x = 0

respectively. The centers for the circular nose and the fillet are located at Co(-I + Ro, O)

and Cl(-Rsinfl, h -F R cos fT), where fl denotes the half wedge angle or cone angle. Here we

have assumed that the nose is convex with R0 > 0 while the fillet can be concave for R1 > 0

or convex for R1 > 0.

The parametric equations for the circular nose and fillet are

= (-l + Ro)- Rosin0., (5)

y = Ro cos8., (6)
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for 0 < y < Yo and

z = -Rising+ R1sinOi (7)

y = (h + R1cos - R1cos0s (8)

for h _> y > yl. The shape function 8,(y) along the circular nose and 8f(y ) along the fillet

are defined by (6) and (8). The shape function of the contour, 8(y) for y0 > y > yl, and

its two free ends, y0 and yl, shall be defined by the necessary conditions for minimum wave

drag subject to the constraint (4). We introduce the Lagrange multiplier )_ and then seek to

minimize

cI'(ei e2,e) - D AI ff0' 2p,_ri = dy (sin 2 8, - A cot 8,)

+ dy (sin' 8- A cot 8) + dy(sin2Ol - A cot 01), (9)

where el, e2 and e_?(y) denote the variations of Y0, Y_, and O(y), i.e.,

_0 = Y0+eo, _l=yx+el and

ft = O(y)+e_?(y) for _0<.V_<_l. (10)

The necessary conditions for a minimum _ are

8(y0+) = 8,(yo),

e(y; ) = 0s(y +)
and yJ sin _ 8 = constant hC.

(11)

(12)

(13)

Condition (4) isfulfilledon account of (5) and (6).Equations (ii) and (12) are the natural

end conditions, requiring that the optimum contour joins smoothly with the circular nose at

Y0 and the fillet at Yl. Equation (13) says that 8 remains constant for y0 < y _< yl for two

dimensional cases and sin 8 .._ y-1/3 for axi-symmetric cases.

The optimum forebody, defined by (5-8), (11), (12) and (13), depends on four parameters

[_o, Rl,l and/9 with

[_o = Ro/h, R_ = R1/h and l= I/h. (14)

In order to study the ranges of these four parameters and their effects on the wave drag,

we introduce a reference forebody as shown in Fig. 2. It is composed of the extension of the

wedge (or conical) surface matched with the circular (or spherical) nose of radius R0. Hence,

we have the shape function

8*(y) --/9 for h _> y > Yl -= Y_ = Rocost 9 (15)

and 8*(y) = cos-_(y/R0) for y_ > y >_ 0. (16)



The scaledlength of the forebody is

[* = cos fl +/_o (1 - cos fl). (17)

This configuration implies that /:o cos 8 < 1. This is fulfilled in real problems for which

/_ < 1. Its scaled wave drag is

D" sin28- 8),+_] 1 cos28 (lS)2p.h(_h)J TT-] tl-(_c°s +(_c°sM+_[':+j 3+7 1"

Also shown in Fig. 2 is an optimum two dimensional forebody with the same _,/_ and

h and a convex fillet, (/_1 < 0). The optimum shape is convex with

$(0) = _r/2, 6(h) = 8 and 0'(y) < 0, (19)

for 0 < y < h. In particular, we note that at the point of tangency with the circular nose,

O(No)> 8 hence No< N* (20)

and that

O(N)> cos-_(y/Ro),

for Y0 < Y < Y*- It follows from (19), (20) and (21) that

(21)

and from (3) and (4) that,

Thus we conclude:

o(N)> o'(N) for 0 < N< h, (22)

D>D* and l<l*. (23)

I, The wave drag of an optimum forebody with a convez fillet, R1 < O, is greater
57 _: ;:: Y :L Z:Z: : :?

than the wave drag D* of the corresponding reference forebody, i.e., having the

same 8, R0 and h, while the length of the former is shorter than the length I* of

the latter.

The reference forebody can be considered as the limiting optimum forebody as/_1 ---* -oo

while Yl --4 Y0.

From hereon, we consider only the optimum forebody with a concave fillet, i.e.,

R, > 0 (24)

¢ z: =: ::_ : _: :

and study {he drag reduction relative to the drag D* of the corresponding reference forebody

as/_1 decreases and [ increases. We shall treat the two dimensional and the ax{-symmetric

problems separately in the following two sections. In each section we determine the following:
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1. The optimum contour and the points of the tangency of the contour with the circular

nose and the convex fillet for a given set of 2o, R1, I and ft.

2. The upper and lower bounds of the scaled length [ as functions of 20, 21 and /3.

3. The dependence of the wave drag on those parameters.

J

I

3. TWO DIMENSIONAL OPTIMUM FOREBODIES

For j -- 0, Eq. (13) for the optimum contour yields

0=constanta for y0<y <yl. (25)

The optimum forebody is composed of the circular nose, for 0 < y < Y0, and the concave

circular fillet, for Yl < Y < h, joined together by their common tangent TOT1, where To

and 2'1 denote the points of tangency at y = y0 and y = yl, respectively, (see Fig. 2).

Instead of solving for a,y0 and Yl from Eqs. (5-8), (11), (12) and (25), we determine them

directly by making use of elementary geometry. Let CoC_ be the straight line parallel to

ToT1 intersecting the radial line C1T1 at C_. Then points CoC2 and C1 are the vertices of a

right triangle with

IO,O21= R0+ R1. (26)

Let ¢ and r denote LC2CoC1 and LOCoC1 respectively. We obtain from Fig. 2 the following:

¢ = sin-l[(R, + Ro)]/IOoO,I,

= sin-'[(h + R_cos/3)]/IOoO,t, (27)

_>a=T-¢>0,

with ICoC,l_/h2= (l- _ - 2_sin/_)"+ (1+ 2, cos/3)'.

Note that the angles ¢,r and a are functions of [,/_,/_1 and/3 and ¢ < 0 in Fig. 2 since

-R1 > Ro > 0. The solutions are real so long as ]CoC1] >_ R1 +/to.

When [ is equal to [* of the reference forebody, Eq. (17), we have ct =/3 and yl = h for

all R1 > 0, keeping in mind that Ro cos/3 < 1. For an optimum contour we have a </3,

yl < h and hence [ > [%

If the ordinate of the center C1 of the fillet is greater than or equal to R1 + R2, i.e.,

1+ 21cos_ > 2, + _, (28)

it is evident from (27) that [CoC_[ > R, + R2 and a > 0 and that as T increases from [* to

o% a decreases from fl to 0.



On the other hand if (28) is not true, we have an upper bound for [ defined by the

condition [C1C0[ = R1 + Ro. The upper bound is

i,,,= & sin_ + _ - {(& + to)_ - (1+ & cos_)p/=. (29)

When the length reaches its maximum, we have 80 = 81 = 8" = cos-l[(1 +/tl cosfl)/(/_l +

to)].
As the length l increases from [" to [", 01 decreases from _ to 8,.. We thereby conclude

that,

II, Art optimum shape defined by the equations in (27) ezists for a scaled length

[ > [*, when condition (28) holds and for I,. > r > [. when (28) does not.

With a defined by (27), the coordinates of the points of tangency are defined by (17) and (18).

The results are To(-I + Ro - R_ sina, Rocosa) and TI(-R1 sin_ + R1 sin a, h + R1 cos5-

R1 cos a). The scaled wave drag of the optimum forebody is =:

D

D(i, to, &,p) = 2p,---X= Do + Ds + D,, (30)

where D0 =/_1 [cos a(1 c°s23 a ) _ cos fl(1 c°s2_ fl'j,

z)s = sin2_[1+ & cos5 - (to + R_)cos_]

and D, = to cos a[1 c°s2 _].
3
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Here/30,/_! and/),_ denote the scaled wave drags of the optimum contour, the fillet and the

nose. For hypersonic configurations, we have fl < < 1. With a < D, we have D0 = 0(_2),

D! = 0(fl 2) and D,, _-= _R0 + 0(to_a). If the nose radius is not very small, /_0 > f12, the

wave drag of an optimum forebody is dominated by that of its nose, D,. and is only slightly

less than that of the reference forebody by O(f12). Since the scaled wave drag of a wedge

of semi angle fl ( /_0 = 0)IS sin s _, the scaled wave drag of an optimum forebody will be

greater than that of the wedge Unless to is very small, 0(fla). For example, for a 4 ° half

angle, _2 = 0.005 we have Ro/h _ 0.005 which will be too small and most likely be ruled

out due to aerodynamic heating.

Consider two optimum forebodies having the same _, R0, R1 and h but different lengths

I and [, as shown in Fig. 2. It is evident that the one which has the shorter length i has

.... larger wave drag since 0(y) > O(y). As the length t decreases the inclination of the common

tangent a increases. When a reaches the upper bound _, Yl is equal to h and the optimum

forebody coincides with the reference forebody of length I. with wave drag D., which is

independent of the fillet radius R1. Again we note that the differences will be only O(_ 2)

unless the scaled nose radius is very small. Thus we conclude:



III, The wave drag of an optimum forebody with R1 > 0 is less than the wave

drag D* of the reference forebody having the same 8, Ro and h while the length

of the former is longer than the length l* of the latter.

IV, If the nose radius is not very small, flo >> fl 2, the wave drag of an optimum

forebody is dominated by that of its nose, Dn and the reduction in the scaled wave

drag for a longer forebody, l > I*, will be only 0(82).

4. AXI-SYMMETRIC OPTIMUM FOREBODIES

In this section we seek the answers to the three items listed at the end of See. 3 for

the axi-symmetric problems. In contrast to the two dimensional problems, we find that for

each set of R, R1,/_, fl and l, with [ lying within its upper and lower bounds, there are two

optimum forebodies, called type a and b. The characteristics of these two types are studied

in detail. For j = 1, Eq. (13) for the optimum contour becomes

where

y sin30 ---=hC for Y0 _< Y < Yl,

hC = Yo sin3 00 -- Yl sin 3 81.

(31)

(32)

From (6), (8) and (32) we obtain an equation for 80 and 81. It is

/_o cos 80 sin 3 8o = C = (1 +/_1 cos 8 - -_1 cos 81) sin a 81. (33)

From (4), (5) and (6) we get the second equation,

where

[ + -P_o(1 - sin 00) -/_1 (sin 8 - sin 01)

= [1/hi cot0 dy = [3/81C[g(81)-g(Oo)],

g(0)= 2csc30 cote-csc0 cote-logcot[#/2].

(34)

Since the optimum shape defined by (31) is convex while the fillet is concave, they can come

in contact at only one point, if they do. That is Eqs. (33) and (34) can have at most one

real root for 01 with

0 < 01 < 8, while 0 < Yl < h. (35)

On the other hand both the spherical nose and the optimum contour (31) are convex.

There can be more than one optimum solutions with different inclinations, 00's. It is easier

to see this by assigning Ro, Rl,fl and O_ and then solving for 00 from (33) and using (34) to

define [.



From the equations in (43), we see that the scaled wave drag of the fillet, Dr, and the

first term in the drag of the contour, Do are at most 0(82). Using the optimum angle 81 = 8,

from Eq. (48) for the optimum forebody of type a, we obtain from (43) the wave drag

b,, = 0(8 + + o(e"/")]- ,-, ,-,b,,. (50)

This says, that so long as the nose radius is not too small, say 0(v'73), the leadingcontribution

to the wave drag comes from the nose which is almost a hemisphere because 8,. ,-_ d/3 < < 1.

For the optimum shape of type b we use Sq. (49) to define 81 = 8, and obtain from

the wave drag

Db = D! + (3/4)_ sin = 81 + 0(8 s) = 0(82). (51)

This says that the contribution of the nose to the wave drag is of higher order 0(86 ) relative

to the total wave drag because the azimuthal angle of the spherical nose is lr/2 - 0b .'- e.

We used (43) and (44) to get (45), i:e.,/ga >/gb. This inequality follows also from the

explicit formulas (50) and (51). We note that we need the condition of/_o being not too

small, (46), or rather/_o >> 8, to establish (43) and (45). However, (43) - (45) hold for

larger/5_0. When,/_0 = 0(1), the wave drag/gb relative to ba is 0(82).

We conclude that :: :
::±

V, There are two optimum forebodies having the same l,h, Rl,andRo: type a,

having an almost hemispherical nose, 0_ << 1 and type b, having a spherical

nose with a small azimuthal angle, 7r/2 - 8b << 1. The wave drag of type b is :

the true minimum.

VI, The wave drag of an optimum forebody of type b can be smaller the that of

a conical body even when the nose radius/_0 = 0(1). The wave drag of type a

will be greater than that of the conical body so long as the nose radius is not too

small, i. e, [_o > > 8.

Since the two forebodies, a and b, have the same nose radius R0, they have the same

characteristics of aerodynamic heating near the stagnation point if the effect of entropy or

vorticity gradient is negligible. For the forebody of type b, the vorticity gradient will be

larger than that of forebody a and thus induce at larger heat flUX [2,3]. The forebody b has a

relatively smaller radius of curvature rb < Ro at the junction with its nose which could effect

the boundary]ayer_ Also the nose area could be too small such that the total aerodynamic

..... _aea_ng of the:_oun_ary layernear thestagnai_on point will not be Sufficient to control the

boundary layer downstream effectively.

A realistic comparison of the optimum forebodies a and b should include both the wave

drag and viscous drag: Additional theoretical and experimental investigations on the viscous

drag, in particular on boundary layer control, are needed.
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Now we shall find the lower and upper bounds for the scaled length [ of the forebody for

a given set of/_,/_1, and/3. For the lower bound of [_(Ro, R1,/3), we note that the maximum

value of the constant C for the optimum contour is

C',,,= min{sin'fl; 3v/'31_o/16}. (52)

When C,n = sin4fl we have 81 = fl, and yl = h for both types a and b and for all/_1 >_ 0.

From Cm we compute the two roots 8, 8b of Eq. (33) and the corresponding minimum length

([,_)= and ([,_)b from Eq. (34).

When C,,, = 31/_/_0/16 we have 0= = 0b = 7r/3 and 01 defined by Eq. (33). Forebody a

and b coincide with each other with T,_ given by Eq. (34).

There is no upper bound on the length of an forebody of type a or b, if h + R1 cos/3 >

Ro+ R1.

In case that the above condition is not valid, there exists a least upper bound on the

scaled length of an optimum forebody of type a. For this type, the circular fillet and the

circular nose touch the optimum contour (31) on the opposite sides of the contour in a

meridian plane. The scaled length reaches its maximum, (/,,)=, when the circular nose is

tangent to the circle of the fillet with Y0 = Yl and the length of the optimum contour (31)

vanishes. The condition on/_o, R1 and _ is

[CoCl[/h = Flo + fll. (53)

with {C0Vl{ defined by (27). The maximum ([M)a is the same function of/_o,/_1 and /3,

given by (29) for the two dimensional problem.

For the optimum forebody b, the circular fillet and the nose touch the optimum contour

on the same side. There will be a least upper bound of ([b when the circle of fillet intersects

the x-axis. It occurs if h + R1 cos/3- R1 _< 0 and the x-intercept is -Rl(sinfl + sin 81) where

01 = cos-l[(/+ R1 cos /3)]/ R1]. The least upper bound is

([u)b = Rl(sin/3 - sin 01). (54)

This upper bound is not attainable by an optimum forebody b, since the optimum solution

with l = Ib has a conical nose of cone angle 81 with/_ = 0.

Using the geometry of the optimum contour (31) and that of the circular nose and fillet,

we can show that the scaled wave drag of a forebody a or b, with given/3 and/_0 increases

as/_1 increase and/or [ decreases. In the limit of/_1 --* oo, [ approaches l* of the reference

forebody. Thus we can conclude

VII, The wave drag of an optimum forebody with a concave fillet, R1 > O, for

either type a or b, is less than the wave drag D* of the corresponding reference

11



forebody composed of a conical surface and spherical nose, with the same _, Ro

and h, while the length of the former is greater than the length l* of the latter.

5. CONCLUDING REMARKS

Analytical solution=foroptimum shape of a two dimensional or axi-symmetric forebody

attached to a symmetric wedge or cone of half angle _ is presented. The forebody is required

to have a circular nose of finite radius Ro defined by the allowable aerodynamic heating at the

stagnation point. The forebody is joined to the truncated wedge or cone at a semi-thickness

or base radius h through a circular:fiiietto=aVoid a discontinuity in slope. The radius of

the fillet R1 is specified with due consideration to avoid flow separation or shock boundary

layer interaction.. Using the modified Newtonian theory, optimum forebodies are defined for

given set of Ro, R1, h,_ and the length of the forebody I.

Using a reference forebody, composed of the extension of the truncated wedge or cone to

match with a circular or spherical nose of the same radius Ro, we show that the wave drag of

an optimum forebody with a concave fillet, R_ > 0, ( a convex fillet R_ < 0) is less (greater)

than the wave drag D* of the reference forebody while the length of the former is greater

(less) that the length I* of the latter, see statement I.

The optimum two dimensional and axi-symmetric forebodies with concave fillet junctions

are analyzed in detail in Secs. 3 and 4 respectively. The least upper and greatest lower

bounds of the scaled length r of the forebody as functions of the parameters Ro, RI,_ with

h as the length scale are determined. The results are discussed under the realistic condition

of_<< 1.

For the two dimensional cases, there is an unique optimum solution for a length I within

the lower and upper bounds. The optimum forebody is defined by Eqs. (25) and (27) and

its wave drag by Eq. (30). The wave drag is dominated by the part on the nose which

is almost a semi-circle of radius R0 so long as /_0 is not extremely small, i.e., /_ >> _2

and the reduction in drag relative to the drag of the reference forebody is small, O(_ 2) See

statements H- IV.

For the axi-symmetric cases, •there are two optimum solutions of type a and type b for

an scaled length [ within the upper and lower bounds. The optimum forebody is defined by

Eqs. (31-34) and (40). The root of the last equation is given by (48) for type a and by (49)

for type b. The wave drag is given by Eq. (43). The optimum forebody of type a is similar

to the two dimensional case, in the sense that its nose is almost a hemisphere and its wave

drag is dominated by that of the nose so long as _ >>/3, The optimum forebody of type b

has a small nose in the form of a spherical cap of small azimuthal angle while the radius/_0

12



can be 0(1). The scaled wave drag of the forebody of type b is O(fi 2) and is dominated by

that of the optimum contour and the fillet while that of the nose is of much higher order.

The wave drag of type b can be smaller than the drag of the conical forebody of cone angle

even when Ro = 0(1). See statements V - VII.

We note that our optimum solutions are based on the modified Newtonian theory. Since

the surface pressure given by the modified Newtonian theory is in good agreement with the

experimental data and numerical solutions of the full system of governing equations, we can

introduce a small positive parameter

6<<1

to denote the order of magnitude of the error of the surface pressure coefficient predicted

by the modified Newtonian theory. Then the wave drag given by the ezperiment or by the

numerical solution usin 9 our optimum forebody will differ from the true minimum by 0(o_).

In other words, the "true" optimum shape will be small perturbation from our optimum

shape. Instead of search for the C_true" optimum shape directly by numerical solution it is

much easier to determine the small perturbation numerically.

It should also be noted that in addition to the wave drag we should also include the

viscous drag. The latter requires a careful study of the boundary layer, flow transition

and/or separation. Our optimum forebodies are simple and could serve as basic models for

systematic experimental studies of the effects of the scaled length and nose radius on the

total drag and their effects on the strong interaction of boundary layer with entropy layer

and on the boundary layer control by utilizing aerodynamic heating near the stagnation

point.
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